Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.358
1.
Am J Hum Genet ; 111(5): 927-938, 2024 May 02.
Article En | MEDLINE | ID: mdl-38701745

Leukocyte telomere length (LTL) varies significantly across human populations, with individuals of African ancestry having longer LTL than non-Africans. However, the genetic and environmental drivers of LTL variation in Africans remain largely unknown. We report here on the relationship between LTL, genetics, and a variety of environmental and climatic factors in ethnically diverse African adults (n = 1,818) originating from Botswana, Tanzania, Ethiopia, and Cameroon. We observe significant variation in LTL among populations, finding that the San hunter-gatherers from Botswana have the longest leukocyte telomeres and that the Fulani pastoralists from Cameroon have the shortest telomeres. Genetic factors explain ∼50% of LTL variation among individuals. Moreover, we observe a significant negative association between Plasmodium falciparum malaria endemicity and LTL while adjusting for age, sex, and genetics. Within Africa, adults from populations indigenous to areas with high malaria exposure have shorter LTL than those in populations indigenous to areas with low malaria exposure. Finally, we explore to what degree the genetic architecture underlying LTL in Africa covaries with malaria exposure.


Malaria, Falciparum , Telomere , Humans , Malaria, Falciparum/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Female , Adult , Africa South of the Sahara/epidemiology , Telomere/genetics , Endemic Diseases , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Black People/genetics , Middle Aged , Leukocytes/metabolism , Telomere Homeostasis/genetics , Young Adult , Sub-Saharan African People
2.
Mol Plant Pathol ; 25(5): e13460, 2024 May.
Article En | MEDLINE | ID: mdl-38695626

Reverse genetic approaches are common tools in genomics for elucidating gene functions, involving techniques such as gene deletion followed by screening for aberrant phenotypes. If the generation of gene deletion mutants fails, the question arises whether the failure stems from technical issues or because the gene of interest (GOI) is essential, meaning that the deletion causes lethality. In this report, we introduce a novel method for assessing gene essentiality using the phytopathogenic ascomycete Magnaporthe oryzae. The method is based on the observation that telomere vectors are lost in transformants during cultivation without selection pressure. We tested the hypothesis that essential genes can be identified in deletion mutants co-transformed with a telomere vector. The M. oryzae gene MoPKC, described in literature as essential, was chosen as GOI. Using CRISPR/Cas9 technology transformants with deleted GOI were generated and backed up by a telomere vector carrying a copy of the GOI and conferring fenhexamid resistance. Transformants in which the GOI deletion in the genome was not successful lost the telomere vector on media without fenhexamid. In contrast, transformants with confirmed GOI deletion retained the telomere vector even in absence of fenhexamid selection. In the latter case, the maintenance of the telomere indicates that the GOI is essential for the surveillance of the fungi, as it would have been lost otherwise. The method presented here allows to test for essentiality of genes when no mutants can be obtained from gene deletion approaches, thereby expanding the toolbox for studying gene function in ascomycetes.


Ascomycota , Genes, Essential , Genetic Vectors , Phenotype , Telomere , Telomere/genetics , Genetic Vectors/genetics , CRISPR-Cas Systems/genetics , Genes, Fungal/genetics , Gene Deletion , Magnaporthe/genetics , Magnaporthe/pathogenicity
3.
PLoS One ; 19(5): e0303357, 2024.
Article En | MEDLINE | ID: mdl-38743757

Short telomeres are associated with cardiovascular disease (CVD). We aimed to investigate, if genetically determined telomere-length effects CVD-risk in the Heinz-Nixdorf-Recall study (HNRS) population. We selected 14 single-nucleotide polymorphisms (SNPs) associated with telomere-length (p<10-8) from the literature and after exclusion 9 SNPs were included in the analyses. Additionally, a genetic risk score (GRS) using these 9 SNPs was calculated. Incident CVD was defined as fatal and non-fatal myocardial infarction, stroke, and coronary death. We included 3874 HNRS participants with available genetic data and had no known history of CVD at baseline. Cox proportional-hazards regression was used to test the association between the SNPs/GRS and incident CVD-risk adjusting for common CVD risk-factors. The analyses were further stratified by CVD risk-factors. During follow-up (12.1±4.31 years), 466 participants experienced CVD-events. No association between SNPs/GRS and CVD was observed in the adjusted analyses. However, the GRS, rs10936599, rs2487999 and rs8105767 increase the CVD-risk in current smoker. Few SNPs (rs10936599, rs2487999, and rs7675998) showed an increased CVD-risk, whereas rs10936599, rs677228 and rs4387287 a decreased CVD-risk, in further strata. The results of our study suggest different effects of SNPs/GRS on CVD-risk depending on the CVD risk-factor strata, highlighting the importance of stratified analyses in CVD risk-factors.


Cardiovascular Diseases , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Telomere , Humans , Cardiovascular Diseases/genetics , Male , Female , Middle Aged , Aged , Telomere/genetics , Risk Factors , Telomere Homeostasis/genetics
4.
Nat Commun ; 15(1): 4061, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744897

Transcription stress has been linked to DNA damage -driven aging, yet the underlying mechanism remains unclear. Here, we demonstrate that Tcea1-/- cells, which harbor a TFIIS defect in transcription elongation, exhibit RNAPII stalling at oxidative DNA damage sites, impaired transcription, accumulation of R-loops, telomere uncapping, chromatin bridges, and genome instability, ultimately resulting in cellular senescence. We found that R-loops at telomeres causally contribute to the release of telomeric DNA fragments in the cytoplasm of Tcea1-/- cells and primary cells derived from naturally aged animals triggering a viral-like immune response. TFIIS-defective cells release extracellular vesicles laden with telomeric DNA fragments that target neighboring cells, which consequently undergo cellular senescence. Thus, transcription stress elicits paracrine signals leading to cellular senescence, promoting aging.


Cellular Senescence , Cytosol , DNA Damage , Paracrine Communication , Telomere , Cellular Senescence/genetics , Animals , Telomere/metabolism , Telomere/genetics , Mice , Cytosol/metabolism , DNA/metabolism , Transcription, Genetic , Mice, Knockout , Humans , Extracellular Vesicles/metabolism , Genomic Instability , Aging/genetics , Aging/metabolism , Oxidative Stress , Mice, Inbred C57BL
5.
Int J Nanomedicine ; 19: 3805-3825, 2024.
Article En | MEDLINE | ID: mdl-38708177

Telomere is a protective structure located at the end of chromosomes of eukaryotes, involved in maintaining the integrity and stability of the genome. Telomeres play an essential role in cancer progression; accordingly, targeting telomere dynamics emerges as an effective approach for the development of cancer therapeutics. Targeting telomere dynamics may work through multifaceted molecular mechanisms; those include the activation of anti-telomerase immune responses, shortening of telomere lengths, induction of telomere dysfunction and constitution of telomerase-responsive drug release systems. In this review, we summarize a wide variety of telomere dynamics-targeted agents in preclinical studies and clinical trials, and reveal their promising therapeutic potential in cancer therapy. As shown, telomere dynamics-active agents are effective as anti-cancer chemotherapeutics and immunotherapeutics. Notably, these agents may display efficacy against cancer stem cells, reducing cancer stem levels. Furthermore, these agents can be integrated with the capability of tumor-specific drug delivery by the constitution of related nanoparticles, antibody drug conjugates and HSA-based drugs.


Antineoplastic Agents , Neoplasms , Telomerase , Telomere , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Telomere/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Telomerase/antagonists & inhibitors , Animals , Drug Delivery Systems/methods , Nanoparticles/chemistry , Immunotherapy/methods , Neoplastic Stem Cells/drug effects
6.
BMC Genomics ; 25(1): 430, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693501

BACKGROUND: Although multiple chicken genomes have been assembled and annotated, the numbers of protein-coding genes in chicken genomes and their variation among breeds are still uncertain due to the low quality of these genome assemblies and limited resources used in their gene annotations. To fill these gaps, we recently assembled genomes of four indigenous chicken breeds with distinct traits at chromosome-level. In this study, we annotated genes in each of these assembled genomes using a combination of RNA-seq- and homology-based approaches. RESULTS: We identified varying numbers (17,497-17,718) of protein-coding genes in the four indigenous chicken genomes, while recovering 51 of the 274 "missing" genes in birds in general, and 36 of the 174 "missing" genes in chickens in particular. Intriguingly, based on deeply sequenced RNA-seq data collected in multiple tissues in the four breeds, we found 571 ~ 627 protein-coding genes in each genome, which were missing in the annotations of the reference chicken genomes (GRCg6a and GRCg7b/w). After removing redundancy, we ended up with a total of 1,420 newly annotated genes (NAGs). The NAGs tend to be found in subtelomeric regions of macro-chromosomes (chr1 to chr5, plus chrZ) and middle chromosomes (chr6 to chr13, plus chrW), as well as in micro-chromosomes (chr14 to chr39) and unplaced contigs, where G/C contents are high. Moreover, the NAGs have elevated quadruplexes G frequencies, while both G/C contents and quadruplexes G frequencies in their surrounding regions are also high. The NAGs showed tissue-specific expression, and we were able to verify 39 (92.9%) of 42 randomly selected ones in various tissues of the four chicken breeds using RT-qPCR experiments. Most of the NAGs were also encoded in the reference chicken genomes, thus, these genomes might harbor more genes than previously thought. CONCLUSION: The NAGs are widely distributed in wild, indigenous and commercial chickens, and they might play critical roles in chicken physiology. Counting these new genes, chicken genomes harbor more genes than originally thought.


Chickens , Genome , Molecular Sequence Annotation , Animals , Chickens/genetics , Base Composition , Telomere/genetics , Chromosomes/genetics , Genomics/methods
7.
Sci Adv ; 10(18): eadl1922, 2024 May 03.
Article En | MEDLINE | ID: mdl-38691604

The most common form of facioscapulohumeral dystrophy (FSHD1) is caused by a partial loss of the D4Z4 macrosatellite repeat array in the subtelomeric region of chromosome 4. Patients with FSHD1 typically carry 1 to 10 D4Z4 repeats, whereas nonaffected individuals have 11 to 150 repeats. The ~150-kilobyte subtelomeric region of the chromosome 10q exhibits a ~99% sequence identity to the 4q, including the D4Z4 array. Nevertheless, contractions of the chr10 array do not cause FSHD or any known disease, as in most people D4Z4 array on chr10 is flanked by the nonfunctional polyadenylation signal, not permitting the DUX4 expression. Here, we attempted to correct the FSHD genotype by a CRISPR-Cas9-induced exchange of the chr4 and chr10 subtelomeric regions. We demonstrated that the induced t(4;10) translocation can generate recombinant genotypes translated into improved FSHD phenotype. FSHD myoblasts with the t(4;10) exhibited reduced expression of the DUX4 targets, restored PAX7 target expression, reduced sensitivity to oxidative stress, and improved differentiation capacity.


Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 4 , Genotype , Homeodomain Proteins , Muscular Dystrophy, Facioscapulohumeral , Phenotype , Telomere , Humans , Chromosomes, Human, Pair 10/genetics , Chromosomes, Human, Pair 4/genetics , CRISPR-Cas Systems , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Myoblasts/metabolism , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Telomere/genetics , Telomere/metabolism , Translocation, Genetic
8.
Nutrients ; 16(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732590

Nucleotides (NTs), important biomolecules involved in numerous cellular processes, have been proposed as potential candidates for anti-aging interventions. However, whether nucleotides can act as an anti-aging supplement in older adults remains unclear. TALENTs is a randomized, double-blinded, placebo-controlled trial that evaluates the efficacy and safety of NTs as an anti-aging supplement in older adults by exploring the effects of NTs on multiple dimensions of aging in a rigorous scientific setting. Eligible community-dwelling adults aged 60-70 years were randomly assigned equally to two groups: nucleotides intervention group and placebo control group. Comprehensive geriatric health assessments were performed at baseline, 2-months, and 4-months of the intervention. Biological specimens were collected and stored for age-related biomarker testing and multi-omics sequencing. The primary outcome was the change from baseline to 4 months on leukocyte telomere length and DNA methylation age. The secondary aims were the changes in possible mechanisms underlying aging processes (immunity, inflammatory profile, oxidative stress, gene stability, endocrine, metabolism, and cardiovascular function). Other outcomes were changes in physical function, body composition and geriatric health assessment (including sleep quality, cognitive function, fatigue, frailty, and psychology). In the RCT, 301 participants were assessed for eligibility and 122 were enrolled. Participants averaged 65.65 years of age, and were predominately female (67.21%). All baseline characteristics were well-balanced between groups, as expected due to randomization. The majority of participants were pre-frailty and had at least one chronic condition. The mean scores for physical activity, psychological, fatigue and quality of life were within the normal range. However, nearly half of the participants still had room for improvement in cognitive level and sleep quality. This TALENTs trial will represent one of the most comprehensive experimental clinical trials in which supplements are administered to elderly participants. The findings of this study will contribute to our understanding of the anti-aging effects of NTs and provide insights into their potential applications in geriatric healthcare.


Aging , Longevity , Nucleotides , Humans , Aged , Female , Male , Aging/physiology , Middle Aged , Double-Blind Method , Dietary Supplements , Geriatric Assessment/methods , DNA Methylation/drug effects , Telomere/drug effects , Leukocytes
9.
J Med Virol ; 96(5): e29665, 2024 May.
Article En | MEDLINE | ID: mdl-38738582

The cause of cancer is attributed to the uncontrolled growth and proliferation of cells resulting from genetic changes and alterations in cell behavior, a phenomenon known as epigenetics. Telomeres, protective caps on the ends of chromosomes, regulate both cellular aging and cancer formation. In most cancers, telomerase is upregulated, with the telomerase reverse transcriptase (TERT) enzyme and telomerase RNA component (TERC) RNA element contributing to the maintenance of telomere length. Additionally, it is noteworthy that two viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), utilize telomerase for their replication or persistence in infected cells. Also, TERT and TERC may play major roles in cancer not related to telomere biology. They are involved in the regulation of gene expression, signal transduction pathways, cellular metabolism, or even immune response modulation. Furthermore, the crosstalk between TERT, TERC, RNA-binding proteins, and microRNAs contributes to a greater extent to cancer biology. To understand the multifaceted roles played by TERT and TERC in cancer and viral life cycles, and then to develop effective therapeutic strategies against these diseases, are fundamental for this goal. By investigating deeply, the complicated mechanisms and relationships between TERT and TERC, scientists will open the doors to new therapies. In its analysis, the review emphasizes the significance of gaining insight into the multifaceted roles that TERT and TERC play in cancer pathogenesis, as well as their involvement in the viral life cycle for designing effective anticancer therapy approaches.


Neoplasms , Telomerase , Telomere , Telomerase/metabolism , Telomerase/genetics , Humans , Neoplasms/virology , Neoplasms/genetics , Telomere/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/pathogenicity , Herpesvirus 4, Human/physiology , RNA/metabolism , RNA/genetics
10.
Proc Natl Acad Sci U S A ; 121(19): e2318438121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38696464

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication, evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), including C-circles, are unique to ALT cells, their generation process remains undefined. Here, we introduce a method to detect single-stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single-stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear and circular C-rich ssDNAs are generated concurrently. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.


DNA, Single-Stranded , Telomere Homeostasis , Telomere , Telomere/genetics , Telomere/metabolism , Humans , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA Replication , DNA/genetics , DNA/metabolism , DNA, Circular/genetics , DNA, Circular/metabolism , Blotting, Southern , DNA Polymerase III/metabolism , DNA Polymerase III/genetics
11.
Parasitol Res ; 123(4): 179, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38584235

Giardia duodenalis, the protozoan responsible for giardiasis, is a significant contributor to millions of diarrheal diseases worldwide. Despite the availability of treatments for this parasitic infection, therapeutic failures are alarmingly frequent. Thus, there is a clear need to identify new therapeutic targets. Giardia telomeres were previously identified, but our understanding of these structures and the critical role played by Giardia telomerase in maintaining genomic stability and its influence on cellular processes remains limited. In this regard, it is known that all Giardia chromosomes are capped by small telomeres, organized and protected by specific proteins that regulate their functions. To counteract natural telomere shortening and maintain high proliferation, Giardia exhibits constant telomerase activity and employs additional mechanisms, such as the formation of G-quadruplex structures and the involvement of transposable elements linked to telomeric repeats. Thus, this study aims to address the existing knowledge gap by compiling the available information (until 2023) about Giardia telomeres and telomerase, focusing on highlighting the distinctive features within this parasite. Furthermore, the potential feasibility of targeting Giardia telomeres and/or telomerase as an innovative therapeutic strategy is discussed.


Giardia lamblia , Giardiasis , Telomerase , Humans , Telomerase/genetics , Telomerase/metabolism , Giardiasis/parasitology , Giardia/genetics , Telomere/genetics , Giardia lamblia/genetics , Giardia lamblia/metabolism
12.
Aging (Albany NY) ; 16(8): 7387-7404, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38663933

Mitochondrial DNA (mtDNA) copy number and telomere length (TL) are dynamic factors that have been linked to the aging process in organisms. However, the causal relationship between these variables remains uncertain. In this research, instrumental variables (IVs) related to mtDNA copy number and TL were obtained from publicly available genome-wide association studies (GWAS). Through bidirectional Mendelian randomization (MR) analysis, we examined the potential causal relationship between these factors. The forward analysis, with mtDNA copy number as the exposure and TL as the outcome, did not reveal a significant effect (B=-0.004, P>0.05). On the contrary, upon conducting a reverse analysis, it was found that there exists a positive causal relationship (B=0.054, P<0.05). Sensitivity analyses further confirmed the reliability of these results. The outcomes of this study indicate a one-way positive causal relationship, indicating that telomere shortening in the aging process may lead to a decrease in mtDNA copy number, providing new perspectives on their biological mechanisms.


Aging , DNA Copy Number Variations , DNA, Mitochondrial , Genome-Wide Association Study , Mendelian Randomization Analysis , Telomere , Humans , DNA, Mitochondrial/genetics , Aging/genetics , Telomere/genetics , Biomarkers , Telomere Homeostasis/genetics , Telomere Shortening/genetics
13.
J Vis Exp ; (205)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38587381

Telomeres are ribonucleoprotein structures at the end of all eukaryotic chromosomes that protect DNA from damage and preserve chromosome stability. Telomere length (TL) has been associated with various exposures, biological processes, and health outcomes. This article describes the monochrome multiplex quantitative polymerase chain reaction (MMqPCR) assay protocol routinely conducted in our laboratory for measuring relative mean TL from human DNA. There are several different PCR-based TL measurement methods, but the specific protocol for the MMqPCR method presented in this publication is repeatable, efficient, cost-effective, and suitable for population-based studies. This detailed protocol outlines all information necessary for investigators to establish this assay in their laboratory. In addition, this protocol provides specific steps to increase the reproducibility of TL measurement by this assay, defined by the intraclass correlation coefficient (ICC) across repeated measurements of the same sample. The ICC is a critical factor in evaluating expected power for a specific study population; as such, reporting cohort-specific ICCs for any TL assay is a necessary step to enhance the overall rigor of population-based studies of TL. Example results utilizing DNA samples extracted from peripheral blood mononuclear cells demonstrate the feasibility of generating highly repeatable TL data using this MMqPCR protocol.


DNA , Leukocytes, Mononuclear , Humans , Reproducibility of Results , Telomere/genetics , Multiplex Polymerase Chain Reaction
14.
Hum Mol Genet ; 33(9): 818-834, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38641551

Telomeres are nucleoprotein structures at the end of chromosomes that maintain their integrity. Mutations in genes coding for proteins involved in telomere protection and elongation produce diseases such as dyskeratosis congenita or idiopathic pulmonary fibrosis known as telomeropathies. These diseases are characterized by premature telomere shortening, increased DNA damage and oxidative stress. Genetic diagnosis of telomeropathy patients has identified mutations in the genes TERT and TERC coding for telomerase components but the functional consequences of many of these mutations still have to be experimentally demonstrated. The activity of twelve TERT and five TERC mutants, five of them identified in Spanish patients, has been analyzed. TERT and TERC mutants were expressed in VA-13 human cells that express low telomerase levels and the activity induced was analyzed. The production of reactive oxygen species, DNA oxidation and TRF2 association at telomeres, DNA damage response and cell apoptosis were determined. Most mutations presented decreased telomerase activity, as compared to wild-type TERT and TERC. In addition, the expression of several TERT and TERC mutants induced oxidative stress, DNA oxidation, DNA damage, decreased recruitment of the shelterin component TRF2 to telomeres and increased apoptosis. These observations might indicate that the increase in DNA damage and oxidative stress observed in cells from telomeropathy patients is dependent on their TERT or TERC mutations. Therefore, analysis of the effect of TERT and TERC mutations of unknown function on DNA damage and oxidative stress could be of great utility to determine the possible pathogenicity of these variants.


Dyskeratosis Congenita , Telomerase , Humans , Apoptosis/genetics , DNA/metabolism , DNA Damage/genetics , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/metabolism , Dyskeratosis Congenita/pathology , Mutation , Oxidative Stress/genetics , RNA/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism
15.
Lipids Health Dis ; 23(1): 103, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38615017

BACKGROUND: Previous studies have demonstrated the relationship between adipocyte factors, insulin resistance, and other indicators with telomere length. However, these studies did not consider the influence of changes in different indicators on telomere length over time. Therefore, the aim of this study is to elucidate the impact of changes in adipocyte factors, HOMA-IR, and other indicators on the dynamic variation of telomere length. METHODS: The data were from a cohort study conducted in Ningxia, China. A total of 1624 subjects were analyzed. Adipokines and relative leukocyte telomere length (RLTL) were measured, and changes in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), Homeostatic Model Assessment for ß-Cell Function (HOMA-ß), and Quantitative Insulin Sensitivity Check Index (QUICKI) were calculated. Generalized linear models evaluated associations between changes in adipokines and RLTL changes. Furthermore, univariate analyses examined the effects of changes in adipokines and insulin resistance indicators on ΔRLTL. RESULTS: The research findings indicate that females generally have shorter telomeres compared to males. In comparison to the low-level group of Δleptin (LEP), the high-level group of ΔLEP shows a negative correlation with ΔRLTL (B=-1.32, 95% CI (-2.38, -0.27)). Even after multivariable adjustments, this relationship persists (B=-1.31, 95% CI (-2.24, -0.23)). Further analysis reveals that after adjusting for ΔHOMA-IR, ΔHOMA-ß, and ΔQUICKI, the high-level group of ΔLEP still exhibits a significant negative correlation with ΔRLTL (B=-1.37, 95% CI (-2.43, -0.31)). However, the interaction effects between ΔHOMA-IR, ΔHOMA-ß, ΔQUICKI, and ΔLEP do not affect ΔRLTL. CONCLUSIONS: Elevated levels of leptin were significantly correlated with shortened telomere length. This suggests that increased leptin levels may impact overall individual health by affecting telomere length, underscoring the importance of measures to reduce leptin levels to mitigate the onset and progression of related diseases.


Insulin Resistance , Leptin , Female , Male , Humans , Leptin/genetics , Cohort Studies , Insulin Resistance/genetics , Rural Population , Telomere Shortening , Telomere/genetics , Adipokines , China , Leukocytes
16.
Sci Data ; 11(1): 380, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38615081

Rice blast caused by Pyricularia oryzae (syn., Magnaporthe oryzae) was one of the most destructive diseases of rice throughout the world. Genome assembly was fundamental to genetic variation identification and critically impacted the understanding of its ability to overcome host resistance. Here, we report a gapless genome assembly of rice blast fungus P. oryzae strain P131 using PacBio, Illumina and high throughput chromatin conformation capture (Hi-C) sequencing data. This assembly contained seven complete chromosomes (43,237,743 bp) and a circular mitochondrial genome (34,866 bp). Approximately 14.31% of this assembly carried repeat sequences, significantly greater than its previous assembled version. This assembly had a 99.9% complement in BUSCO evaluation. A total of 14,982 genes protein-coding genes were predicted. In summary, we assembled the first telomere-to-telomere gapless genome of P. oryzae, which would be a valuable genome resource for future research on the genome evolution and host adaptation.


Ascomycota , Genome, Fungal , Ascomycota/genetics , Chromatin , Telomere/genetics
17.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Article En | MEDLINE | ID: mdl-38593805

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


DNA Damage , DNA Replication , RecQ Helicases , Telomere Homeostasis , Telomere , RecQ Helicases/metabolism , RecQ Helicases/genetics , Humans , Telomere/metabolism , Telomere/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Bloom Syndrome/genetics , Bloom Syndrome/metabolism , Bloom Syndrome/enzymology , Bloom Syndrome/pathology , Cell Line, Tumor
18.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38612707

Cancers harness embryonic programs to evade aging and promote survival. Normally, sequences at chromosome ends called telomeres shorten with cell division, serving as a countdown clock to limit cell replication. Therefore, a crucial aspect of cancerous transformation is avoiding replicative aging by activation of telomere repair programs. Mouse embryonic stem cells (mESCs) activate a transient expression of the gene Zscan4, which correlates with chromatin de-condensation and telomere extension. Head and neck squamous cell carcinoma (HNSCC) cancers reactivate ZSCAN4, which in turn regulates the phenotype of cancer stem cells (CSCs). Our study reveals a new role for human ZSCAN4 in facilitating functional histone H3 acetylation at telomere chromatin. Next-generation sequencing indicates ZSCAN4 enrichment at telomere chromatin. These changes correlate with ZSCAN4-induced histone H3 acetylation and telomere elongation, while CRISPR/Cas9 knockout of ZSCAN4 leads to reduced H3 acetylation and telomere shortening. Our study elucidates the intricate involvement of ZSCAN4 and its significant contribution to telomere chromatin remodeling. These findings suggest that ZSCAN4 induction serves as a novel link between 'stemness' and telomere maintenance. Targeting ZSCAN4 may offer new therapeutic approaches to effectively limit or enhance the replicative lifespan of stem cells and cancer cells.


Histones , Telomere , Animals , Mice , Humans , Acetylation , Telomere/genetics , Chromatin/genetics , Aging
19.
Elife ; 122024 Apr 24.
Article En | MEDLINE | ID: mdl-38656297

Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome stability and integrity in eukaryotes. In the baker's yeast Saccharomyces cerevisiae, the X- and Y'-elements are subtelomeric repetitive sequences found in all 32 and 17 telomeres, respectively. While the Y'-elements serve as a backup for telomere functions in cells lacking telomerase, the function of the X-elements remains unclear. This study utilized the S. cerevisiae strain SY12, which has three chromosomes and six telomeres, to investigate the role of X-elements (as well as Y'-elements) in telomere maintenance. Deletion of Y'-elements (SY12YΔ), X-elements (SY12XYΔ+Y), or both X- and Y'-elements (SY12XYΔ) did not impact the length of the terminal TG1-3 tracks or telomere silencing. However, inactivation of telomerase in SY12YΔ, SY12XYΔ+Y, and SY12XYΔ cells resulted in cellular senescence and the generation of survivors. These survivors either maintained their telomeres through homologous recombination-dependent TG1-3 track elongation or underwent microhomology-mediated intra-chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric X- and Y'-elements in telomere regulation in both telomerase-proficient and telomerase-null cells and suggest that these elements may represent remnants of S. cerevisiae genome evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise telomere structures and offer potential models for future studies in telomere biology.


Repetitive Sequences, Nucleic Acid , Saccharomyces cerevisiae , Telomerase , Telomere , Saccharomyces cerevisiae/genetics , Telomere/metabolism , Telomere/genetics , Repetitive Sequences, Nucleic Acid/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere Homeostasis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Deletion
20.
BMJ Open ; 14(4): e077808, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38643009

OBJECTIVE: We aimed to explore the association between the leucocyte telomere length (LTL) and erectile dysfunction (ED) among a nationally representative sample of US adults. DESIGN: Secondary population-based study. SETTING: The National Health and Nutrition Examination Survey (NHANES) (2001-2002). PARTICIPANTS: A total of 1694 male participants were extracted from the NHANES database for 2001-2002. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary focus of the study was to determine the association between the LTL and ED, using multivariate logistic regression and restricted cubic spline models for examination. The secondary outcome measures involved conducting stratified subgroup analyses to exclude interactions of different variables with the LTL. RESULTS: Participants with ED had shorter LTLs than those without ED (p<0.05). After adjusting for confounding factors, compared with the reference lowest LTL quartile, the ORs and 95% CIs for the second, third and fourth LTL quartiles were (OR 1.51; 95% CI 1.01 to 2.26), (OR 1.79; 95% CI 1.24 to 2.58) and (OR 1.25; 95% CI 0.74 to 2.11), respectively. In addition, restricted cubic splines showed an inverted J-curve relationship between the LTL and ED. At an LTL of 1.037, the curve showed an inflection point. The ORs (95% CI) of ED on the left and right sides of the inflection point were (OR 1.99; 95% CI 0.39 to 10.20; p=0.385) and (OR 0.17; 95% CI 0.03 to 0.90; p=0.039). CONCLUSION: Our results demonstrated an inverted J-curve relationship between the LTL and ED. When the LTL was ≥1.037, the incidence of ED decreased with increasing LTL.


Erectile Dysfunction , Adult , Humans , Male , Erectile Dysfunction/epidemiology , Erectile Dysfunction/genetics , Nutrition Surveys , Telomere , Leukocytes , Logistic Models
...